If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-1750x-390624=0
a = 2; b = -1750; c = -390624;
Δ = b2-4ac
Δ = -17502-4·2·(-390624)
Δ = 6187492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6187492}=\sqrt{4*1546873}=\sqrt{4}*\sqrt{1546873}=2\sqrt{1546873}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1750)-2\sqrt{1546873}}{2*2}=\frac{1750-2\sqrt{1546873}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1750)+2\sqrt{1546873}}{2*2}=\frac{1750+2\sqrt{1546873}}{4} $
| 3(x-2=4x+1 | | 1260=60x-1,2 | | x+2x+3x=6x | | 21+5x=-48 | | 6(y-5)=36 | | (-2x)*(-4x)=72 | | 4x÷8=8 | | 8k-1/3k=5k | | s(11-s)=22 | | 6x-18=6(2x-6) | | 1.20x+1.08=7.80 | | 1/4+1/4n=1/2n | | -2x+2/3=4/3 | | (-3/7)h=6 | | 2(4+3y)=8y-12-12 | | 27=x2+10x-16x | | 13=w/13-4 | | (6x-5)=(x+17) | | −f+2+4f=8−3 | | 6(3y)-y=69 | | (3+2i)(-4-3i)=0 | | 970=m−-682 | | 2(3x-1)^2+13(3x-1)-7=0 | | 2(3x-1)+13(3x-1)-7=0 | | -9=x/3+4 | | -7=-6/c+12 | | 5−2u=1 | | -3+5+6g=11=3g | | 6(x+1)3=5x-2 | | (x-4)(x-5)(x-6)(x-7)=283 | | 709=d−147 | | 1=(13/18)+(y/18) |